MR NATIONAL BANK OF ROMANIA

Sinaia, November 16th, 2018

Looking for the macroprudential policy stance

<u>Alexie Alupoaiei</u> Florian Neagu Matei Kubinschi

The opinions expressed in this paper/presentation are those of the authors and do not necessarily reflect the views of the National Bank of Romania.

Presentation outline

- Motivation
- Current environment
- A structural approach for the macropru' policy stance
- An at stress based approach for the macropru' policy stance
- Conclusions

Job description of the macroprudential policy in **three core directions**:

- When to act?
- How to act?
- How much to act?

➔ Need for simple implementable optimal rules for instruments setting

→ Need for a proper understanding of the interaction between macroprudential instruments and financial stability related objectives

Current environment

Current environment

Romanian macro-financial environment shows a strong procyclical pattern: high increases followed by contractions of similar or even larger magnitudes = "Boom & Bust" behavior

Source: NBR, NIS

🛞 NATIONAL BANK OF ROMANIA

A structural approach for the macroprudential policy stance

<u>A structural approach for the macroprudential</u> <u>policy stance: framework</u>

Financial-business cycle facts as in Iacoviello (2013) and Rubio and Carrasco-Gallego (2014) are analysed by using a Dynamic Stochastic General Equilibrium (DSGE) model

<u>A structural approach for the macroprudential</u> <u>policy stance: implementation (I)</u>

- > Method: Calibration at quarterly frequency for Romanian economy
- > Exogenous disturbance: technology shock
- Solving: Second order approximation for the welfare based optimal policy adopted by the macroprudential authority
- Instruments: Loan-to-Value (LTV) and Countercyclical Capital Buffer (CCyB)
- > Macroprudential decisions:
 - i) static exogenous rules
 - ii) dynamic hybrid (endogenous and exogenous elements) rules

<u>A structural approach for the macroprudential</u> policy stance: implementation (II)

Welfare definition

$$W_0 = E_0 \sum_{t=0}^{\infty} \beta^t U(\Omega_t)$$

 W_0 – unconditional welfare

- E_0 expectation operation
- β subjective discount factor
- U utility (felicity)function
- Ω_t a vector of contingent plans (e.g. consumption, work,

housing acquisitions)

<u>A structural approach for the macroprudential</u> policy stance: implementation (III)

Second order approximation for welfare

$$W = \mathcal{G}(s_0, \sigma) + \mathcal{G}_{\sigma}(s_0, \sigma)\sigma + \frac{1}{2}\mathcal{G}_{\sigma\sigma}(s_0, \sigma)\sigma^2$$

G – a function of the initial state vector s₀ and the σ parameter used to scale the standard deviation of exogenous disturbances

Macroprudential policy objective

 $\Phi = \arg max(W)$

 Φ – a vector of parameters for defined rules

<u>A structural approach for the macroprudential</u> policy stance: implementation (IV)

Static rules

$$CAR_t = CAR^{SS} \qquad LTV_t = LTV^{SS}$$

Dynamic rules

$$\ln\left(\frac{CAR_t}{CAR^{SS}}\right) = \rho_r \ln\left(\frac{CAR_{t-1}}{CAR^{SS}}\right) + (1 - \rho_r)\varphi_l \ln\left(\frac{Lend_t}{Output_t}, \frac{Output^{SS}}{Lend^{SS}}\right)$$
$$\ln\left(\frac{LTV_t}{LTV^{SS}}\right) = \rho_r \ln\left(\frac{LTV_{t-1}}{LTV^{SS}}\right) + (1 - \rho_r)\varphi_h \ln\left(\frac{House_t}{House^{SS}}\right)$$

🛞 NATIONAL BANK OF ROMANIA

<u>A structural approach for the macroprudential</u> policy stance: results (I)

For the optimal static rules, obtained parameters for CAR and LTV (dotted bars) are close to the related empirical averages

Source: own calculations

<u>A structural approach for the macroprudential</u> policy stance: results (II)

Source: own calculations

- For the optimal dynamic rules, we elaborated a counterfactual analysis to investigated dynamics of the key variables
- ...by feeding a series of technology shocks to match the empirical evolution of TFP during 2006Q1-2011Q4, we implemented a dynamic simulation approach for model with optimal dynamic rules

<u>A structural approach for the macroprudential</u> policy stance: results (III)

Source: own calculations

When optimal rules for two core macroprudential instruments are implemented, volatility of the financial-business cycle gap is smoother that the case with no optimality

- …the optimal rule for CCyB is smoother as compared with the ESRB frameworks for the longand short-cycle before
- …and could provide different information on the policy stance

RATIONAL BANK OF ROMANIA

An *at stress* based approach for the macroprudential policy stance

An at stress approach for the macroprudential policy stance: framework

Macroprudential policy has a **higher capacity** to reduce the downside risk related to real economic activity than other macroeconomic policies

🛞 National Bank of Romania

An *at stress* approach for the macroprudential policy stance: A financial stability barometer (I)

EWS Framework \rightarrow multiple indicators with potential to signal the **build-up of vulnerabilities** in the financial sector (building on Duprey and Robers, 2017 – Bank of Canada Paper)

Variables included (22) – sectoral basis

- Household sector: total indebtedness, mortgage and consumer indebtedness (growth rate and dev. from trend)
- NFC sector: total indebtedness, external indebtedness (growth rate and dev. from trend)
- Government sector: public debt to GDP ratio (growth rate and deviation from trend)
- Banking sector: leverage ratio, liquidity ratio, profitability (ROE)
- Real estate sector: housing price index (growth rate and deviation from trend)
- Macroeconomic stance: output gap, structural public deficit, current account deficit

Aggregate index – Barometer_t = $\sum_{s=1}^{S} max \left\{ \sum_{i=1}^{I_s} max \left\{ \frac{v_{s,i,t} - \tau_{s,i}}{\sigma_{s,i}}; -1 \right\} * \omega_{s,i}; 0 \right\}$

With weights computed as
$$\omega_{m,i} = \frac{max\{AUROC_{m,i} - 0.5; 0\}}{\sum_{i=1}^{I_m} max\{AUROC_{m,i} - 0.5; 0\}} \rightarrow EWS$$
 framework

🛞 NATIONAL BANK OF ROMANIA

An at stress approach for the macroprudential policy stance: A financial stability barometer (II)

Threshold selection \rightarrow limited length of historical data

Solution = historical averages, pre-crisis values, expert judgement, reference values (e.g. Maastricht Treaty)

Crisis signal \rightarrow dummy variable identifying the crisis episode from **Q3 2005 until Q4 2008** \leftrightarrow main interest = indicators with high predictive power in capturing the vulnerabilities in the build-up phase

Weights → derived from EWS models and aggregated taking into account each series volatility

Table 1. Indicators and thresholds used in the Barometer

Indicator	Threshold	Indicator	Threshold
(1) Household indebtedness		(6) Public debt	
growth rate	10%	growth rate	10%
dev. from trend	1%	dev. from trend	2%
(2) Mortgage indebtedness		(7) Banking sector	
growth rate	10%	Bank leverage	12%
dev. from trend	1%	Bank liquidity	65%
(3) Consumer indebtedness		ROE	3%
growth rate	10%	(8) House price index	
dev. from trend	1%	growth rate	5%
(4) NFC indebtedness		dev. from trend	2%
growth rate	10%	(8) Macroeconomic stance	
dev. from trend	1%	Output gap	2%
(5) NFC external indebtedness		Structural deficit	1%
growth rate	10%	Current account def.	2%
dev. from trend	1%		

Source: NBR

An at stress approach for the macroprudential policy stance: A financial stability barometer (III)

Source: own calculations

An at stress approach for the macroprudential policy stance: GDP at stress (I)

Difference between conditional and unconditional forecast for GDP

Source: own calculations

Structural BVAR with sign restrictions → GDP growth, inflation, interest rate, loan growth (HH and NFC), capital ratio and spreads (HH and NFC) – identification of demand and bank capital shocks

Counterfactual scenario → conditional forecast with a stress scenario - drop in HH (-15%) and NFC (-9%) lending over 12 quarters

Compute a *"GDP at stress"* = difference between unconditional and conditional forecasts

An at stress approach for the macroprudential policy stance: GDP at stress (II)

Density forecasts of the GDP are produced by using a Bayesian VAR model (Minnesota Prior approach) with business and financial variables

Source: own calculations

Conclusions

- The macroprudential policy stance is difficult to be properly identified because it is not directly observable - sustained research efforts need to be conducted further forward
- Hybrid approaches to asses the macroprudential policy stance could provide a (con)quest of the robust financial stability conditions
- Need for a mix of macroprudential policies, properly designated, to be able to reduce the probability of strong financial imbalances

Thank you for your attention!